Addition KS2

KS1	Pupils should practise addition to 20 and within to become increasingly fluent. They should use the facts they know to derive others, e.g using $7+3=10$ to find $17+3=20,70+30=100$ They should use concrete objects and practical apparatus, such as bead strings and number lines to explore additions including missing numbers. Use pictorial representations such as bar models and whole part diagrams to show additive relationships. 100 squares could be used to explore patterns in calculations such as $74+11,77+9$ encouraging children to think about 'What do you notice?' where partitioning or adjusting is used. Pupils should learn to check their calculations, by using the inverse. They should continue to see addition as both combining groups and counting on. They should use Dienes to model partitioning into tens and ones* and learn to rearrange numbers in different ways e.g. $23=20+3=10+13$. Show understanding that adding zero leaves a number unchanged.					
Year	Basic to subject specific (Beck's Tiers): +, add, addition, more, plus make, sum, total altogether score double, near double one more, two more... ten more... one hundred more how many more to make...? how many more is... than...? how much more is...?					
Layers of vocabulary Appendix 1a Beck's Tiers of Vocabulary Appendix 1b: Vocabulary book	Instructional vocabulary: explain your method explain how you got your answer give an example of... show how you... show your working NFER Arithmetic			Basic to subject specific add, addition, more, plus double how many more Instructional vocabulary calculate, work out, solve NFER Arithmetic	eck's Tiers): ncrease sum, total, alto make...? nvestigate, question a	ether score double, near wer check
NC 2014	Add and subtract numbers with up to 3 digits, using formal written methods of columnar addition and subtraction.			Add and subtract numbers with up to 4 digits using the formal written method of columnar addition and subtraction where appropriate. Solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why.		
Developing Declarative Procedural \& Conditional Knowledge	Near doubles $13+14=$ Double $13=26$ $26+1=27$ or Double $14=28$ $28-127$ Using known facts $40+80=120$ using $4+8=$ 12 So $400+800=1200$	Start with least significant digit $\begin{array}{r} 67 \\ +24 \\ \hline 11(7+4) \\ +80(60+20) \\ \hline 91 \end{array}$ "7 add 4 equals 11 and 60 add 20 equals $80.1+0=1$ and 1 ten +8 tens $=9$ tens" " 6 tens add 2 tens equals 8 tens"		Using known facts $40+80=120$ using $4+8=12$ So $400+800=1200$ and $4000+8000=12,000$ Remodelling strategy $3548+1998$ $3546+2000=5546$ Place value materials to represent calculations	Columnar addition 587 $\begin{array}{r} +\quad 475 \\ \hline 1062 \\ \hline 11 \end{array}$ " 7 add 5 equals 12 . That's 2 ones and 1 ten to carry over. 8 add 7 equals 15 and the 1 ten to carry makes 16. That's 6 tens and 100 to carry over. 500 add 400 equals 900 and the 1 hundred to carry makes 1000"	Columnar addition (decimals) in contexts such as money and measurement $\begin{array}{r} 12.45 \\ 7.6 \\ +24.50 \\ \hline 44.31 \\ \hline 111 \end{array}$

Addition KS2

Addition KS2

Addition KS2

